Produktivita
Expert
Ostatní
AI Tool Limitations & Workarounds - Překonávání Omezení
Praktický průvodce známými omezeními AI nástrojů (hallucinations, context limits, reasoning failures) a efektivními workaroundy pro produktivní práci i při těchto omezeních.
Prompt text
Délka: Dlouhý
Jsi expert na realistické využití AI nástrojů a znáš jejich omezení i workaround strategie. Pomoz mi identifikovat a vyřešit problémy s [NÁSTROJ].
Můj kontext:
- AI nástroj: [NÁSTROJ - např. "Claude Pro", "ChatGPT Plus", "GitHub Copilot", "Cursor"]
- Konkrétní problém: [PROBLÉM - např. "hallucinations v kódu", "context overflow", "inconsistent outputs", "nezvládá složitou logiku"]
- Můj use case: [POUŽITÍ - např. "software development", "content writing", "data analysis"]
- Co jsem už zkoušel: [POKUSY - např. "různé prompty", "rozdělení na menší úkoly", "jiný model"]
- Urgence: [URGENCE - např. "blokuje mě to v práci", "nice to have optimization"]
Vytvoř mi:
1. **Analýza Konkrétního Omezení**
- Jaké přesné omezení je příčina mého problému
- Proč se to děje (technická příčina)
- Kdy se to projevuje vs kdy ne
- Severity (critical blocker vs minor annoyance)
2. **Immediate Workarounds (Quick Fixes)**
- Praktické obcházení problému DNES
- Step-by-step instrukce
- Příklady konkrétních promptů/technik
- Očekávané výsledky
3. **Long-Term Solutions**
- Workflow adjustments
- Tool selection/switching strategy
- Automation možnosti
- Prevention strategies
4. **Tool-Specific Limitations & Fixes**
**Claude:**
- Context window management (200K limit)
- Rate limiting (usage caps)
- Hallucinations na factual data
- Refusal to complete valid requests
- Cost optimization
**ChatGPT:**
- Memory limitations
- Outdated training data
- Code Interpreter timeout
- DALL-E generation limits
- Web browsing reliability
**GitHub Copilot:**
- Suggestions quality varies
- Context awareness limited
- License/copyright concerns
- Privacy/security (code sent to cloud)
- Performance impact in IDE
**Cursor:**
- Composer Mode token limits
- Multi-file edit accuracy
- Slow with large codebases
- Pricing for heavy users
- Offline functionality
**Gemini:**
- Gemini 1M context praktická využitelnost
- Reasoning quality vs Claude/GPT
- Multimodal accuracy issues
- Rate limiting strictness
5. **Common Pitfalls & Prevention**
- Over-reliance (when to manual)
- Hallucination detection
- Quality validation workflows
- Security/privacy risks
- Cost runaway prevention
6. **Decision Framework: When to Give Up on AI**
- Signs AI won't help with this task
- Alternative approaches
- Human expertise when essential
- Hybrid workflows (AI + manual)
7. **Practical Examples**
Pro každé významné omezení:
- Real-world scénář where it fails
- Why it fails
- Workaround step-by-step
- Success metrics
8. **Tool Comparison for Workarounds**
- Which tool handles which limitation better
- Migration strategy when needed
- Cost-benefit analysis
- When to use multiple tools
9. **Future-Proofing**
- Očekávané improvements (roadmap)
- How to stay updated
- Beta features to test
- Adaptation strategies
10. **Emergency Playbook**
- AI completely blocked → what now?
- Backup workflows
- Manual fallback procedures
- Time-to-recovery estimates
Zaměř se na:
✅ Actionable workarounds (ne jen "to je omezení")
✅ Real-world příklady
✅ Step-by-step instructions
✅ Měřitelné improvement metriky
✅ Cost-effective řešení
Můj kontext:
- AI nástroj: [NÁSTROJ - např. "Claude Pro", "ChatGPT Plus", "GitHub Copilot", "Cursor"]
- Konkrétní problém: [PROBLÉM - např. "hallucinations v kódu", "context overflow", "inconsistent outputs", "nezvládá složitou logiku"]
- Můj use case: [POUŽITÍ - např. "software development", "content writing", "data analysis"]
- Co jsem už zkoušel: [POKUSY - např. "různé prompty", "rozdělení na menší úkoly", "jiný model"]
- Urgence: [URGENCE - např. "blokuje mě to v práci", "nice to have optimization"]
Vytvoř mi:
1. **Analýza Konkrétního Omezení**
- Jaké přesné omezení je příčina mého problému
- Proč se to děje (technická příčina)
- Kdy se to projevuje vs kdy ne
- Severity (critical blocker vs minor annoyance)
2. **Immediate Workarounds (Quick Fixes)**
- Praktické obcházení problému DNES
- Step-by-step instrukce
- Příklady konkrétních promptů/technik
- Očekávané výsledky
3. **Long-Term Solutions**
- Workflow adjustments
- Tool selection/switching strategy
- Automation možnosti
- Prevention strategies
4. **Tool-Specific Limitations & Fixes**
**Claude:**
- Context window management (200K limit)
- Rate limiting (usage caps)
- Hallucinations na factual data
- Refusal to complete valid requests
- Cost optimization
**ChatGPT:**
- Memory limitations
- Outdated training data
- Code Interpreter timeout
- DALL-E generation limits
- Web browsing reliability
**GitHub Copilot:**
- Suggestions quality varies
- Context awareness limited
- License/copyright concerns
- Privacy/security (code sent to cloud)
- Performance impact in IDE
**Cursor:**
- Composer Mode token limits
- Multi-file edit accuracy
- Slow with large codebases
- Pricing for heavy users
- Offline functionality
**Gemini:**
- Gemini 1M context praktická využitelnost
- Reasoning quality vs Claude/GPT
- Multimodal accuracy issues
- Rate limiting strictness
5. **Common Pitfalls & Prevention**
- Over-reliance (when to manual)
- Hallucination detection
- Quality validation workflows
- Security/privacy risks
- Cost runaway prevention
6. **Decision Framework: When to Give Up on AI**
- Signs AI won't help with this task
- Alternative approaches
- Human expertise when essential
- Hybrid workflows (AI + manual)
7. **Practical Examples**
Pro každé významné omezení:
- Real-world scénář where it fails
- Why it fails
- Workaround step-by-step
- Success metrics
8. **Tool Comparison for Workarounds**
- Which tool handles which limitation better
- Migration strategy when needed
- Cost-benefit analysis
- When to use multiple tools
9. **Future-Proofing**
- Očekávané improvements (roadmap)
- How to stay updated
- Beta features to test
- Adaptation strategies
10. **Emergency Playbook**
- AI completely blocked → what now?
- Backup workflows
- Manual fallback procedures
- Time-to-recovery estimates
Zaměř se na:
✅ Actionable workarounds (ne jen "to je omezení")
✅ Real-world příklady
✅ Step-by-step instructions
✅ Měřitelné improvement metriky
✅ Cost-effective řešení
Příklad použití
Vstup:
AI nástroj: Claude Pro
Konkrétní problém: Claude často hallucinate neexistující funkce a API když generuje kód. Pak musím všechno manuálně kontrolovat a opravovat, což zabírá více času než kdyby jsem psal kód sám.
Můj use case: Full-stack web development (Next.js, Python, PostgreSQL)
Co jsem už zkoušel: Snažil jsem se být specifičtější v promptech, paste dokumentaci, ale stále někdy vymýšlí API calls
Urgence: Blokuje mě to v produktivitě - musím vše double-check
Konkrétní problém: Claude často hallucinate neexistující funkce a API když generuje kód. Pak musím všechno manuálně kontrolovat a opravovat, což zabírá více času než kdyby jsem psal kód sám.
Můj use case: Full-stack web development (Next.js, Python, PostgreSQL)
Co jsem už zkoušel: Snažil jsem se být specifičtější v promptech, paste dokumentaci, ale stále někdy vymýšlí API calls
Urgence: Blokuje mě to v produktivitě - musím vše double-check
Výstup:
# AI Hallucinations in Code Generation - Complete Workaround Guide
## Jak Vyřešit Problém s Vymýšlením Neexistujících API 🔧
---
## 1. Analýza Konkrétního Omezení
### 🎯 Přesná Identifikace Problému
**Váš problém:** Claude generuje kód s neexistujícími funkcemi/API
**Technická příčina:**
- **Training data cutoff:** Claude byl natrénován na datech do ledna 2025
- **Probabilistic generation:** AI predikuje "pravděpodobný" kód, ne "fakticky správný"
- **Pattern matching:** Pokud vidí podobné API, extrapoluje že existují i jiné podobné
- **No runtime verification:** Claude NEMŮŽE ověřit, že API skutečně existuje
**Konkrétní příklady hallucinations:**
**Hallucination #1: Non-existent Next.js API**
```typescript
// ❌ HALLUCINATION - Claude vymyslel
import { useServerState } from 'next/server-state'; // doesn't exist!
// ✅ SKUTEČNOST - správný Next.js způsob
import { cookies } from 'next/headers';
const cookieStore = cookies();
```
**Hallucination #2: Invented Python Library Method**
```python
# ❌ HALLUCINATION
import pandas as pd
df.smart_fill_missing() # pandas nemá tuto metodu!
# ✅ SKUTEČNOST
df.fillna(method='ffill') # správná pandas metoda
```
**Hallucination #3: Wrong Prisma Syntax**
```typescript
// ❌ HALLUCINATION - Claude kombinuje různé API styly
await prisma.user.findUniqueOrCreate({ // neexistuje!
where: { email },
create: { email, name }
});
// ✅ SKUTEČNOST - dvě samostatné metody
const user = await prisma.user.findUnique({ where: { email } });
if (!user) {
await prisma.user.create({ data: { email, name } });
}
```
---
### ⚠️ Kdy Se To Projevuje
**HIGH RISK (časté hallucinations):**
- ✅ **Nové/beta features** knihoven (Next.js 14, React 19)
- ✅ **Kombinace multiple APIs** (když Claude "sklada" různé knihovny)
- ✅ **Méně populární libraries** (malý training data)
- ✅ **Internal/proprietary APIs** (Claude to NIKDY neviděl)
- ✅ **Deprecated APIs** (Claude zná staré verze)
**LOW RISK (zřídka hallucinations):**
- ❌ **Established stable APIs** (React základy, Express.js core)
- ❌ **Standard library** functions (Python builtin, Node.js core)
- ❌ **Well-documented major frameworks** (Django ORM, Rails ActiveRecord)
**Severity:** 🔴 **CRITICAL BLOCKER**
- Generovaný kód NEfunguje out-of-the-box
- Requires manual debugging (časově náročné)
- Erodes trust v AI outputs
---
## 2. Immediate Workarounds (Použitelné DNES)
### ✅ Workaround #1: Forced Documentation Reference
**Strategy:** Nutně zahrň dokumentaci přímo do promptu
**Implementace:**
**ŠPATNĚ (bez dokumentace):**
```
Prompt: "Create Next.js 14 API route for user registration"
Claude: [generates code with potentially hallucinated APIs]
```
**DOBŘE (s dokumentací):**
```
Prompt: """Create Next.js 14 API route for user registration.
Use ONLY these documented Next.js 14 APIs:
ROUTE HANDLERS (app/api/*/route.ts):
- export async function GET(request: Request)
- export async function POST(request: Request)
- NextRequest: request.nextUrl, request.cookies, request.json()
- NextResponse: NextResponse.json(data, { status })
AVAILABLE FUNCTIONS:
- import { cookies } from 'next/headers'
- import { headers } from 'next/headers'
- import { redirect } from 'next/navigation'
Do NOT use:
- 'useServerState' (doesn't exist)
- 'getServerSession' (wrong import path)
- Any API not listed above
Generate implementation using ONLY documented APIs above."""
Claude: [generates code strictly using provided APIs]
```
**Result:** ✅ **90%+ reduction in hallucinations**
---
**Template for Your Use Case:**
```markdown
# Template: Hallucination-Proof Prompt
**Task:** [Your task description]
**Tech Stack Documentation (ONLY use these APIs):**
## Library 1: [Name + Version]
**Imports:**
- import { X } from 'library/path'
- import { Y } from 'library/other'
**Available Methods:**
- object.method(params) → returns X
- object.method2(params) → returns Y
**Examples:**
[paste 1-2 code examples from official docs]
## Library 2: [Name + Version]
[... same structure ...]
**RULES:**
1. Use ONLY methods listed above
2. Do NOT invent methods not documented
3. If uncertain, ask me for clarification
4. Reference specific example numbers when using patterns
**Now implement:** [Your specific task]
```
**Savings:**
- **Before:** 60 min coding + 30 min debugging hallucinations = 90 min
- **After:** 75 min coding (slower prompting, but correct) = 75 min
- **Net savings:** 15 min + **zero frustration** ✅
---
### ✅ Workaround #2: Verification-First Workflow
**Strategy:** Generate → Verify → Fix loop
**Step-by-Step:**
#### Step 1: Generate with Hallucination Awareness
**Prompt:**
```
Generate Next.js user registration API route.
IMPORTANT: You may not know all latest Next.js 14 APIs.
For any function/import you use, add a comment:
// VERIFY: [function name] - check official docs
Example:
import { getServerSession } from 'next-auth'; // VERIFY: getServerSession import path
This helps me quickly check uncertain APIs.
```
**Claude Output:**
```typescript
import { cookies } from 'next/headers'; // VERIFY: cookies import (Next.js 14)
import { getServerSession } from 'next-auth'; // VERIFY: getServerSession import
import { NextResponse } from 'next/server'; // VERIFY: NextResponse (Next.js 14)
export async function POST(request: Request) {
const session = await getServerSession(); // VERIFY: getServerSession usage
// ... rest of code
}
```
#### Step 2: Focused Verification (10 min)
**Check only // VERIFY items:**
1. Open Next.js 14 docs
2. Search for "cookies" → ✅ Exists
3. Search for "getServerSession" → ❌ Wrong import path!
- **Actual:** import { getServerSession } from "next-auth/next"
4. Search for "NextResponse" → ✅ Exists
**Fix List:**
- ❌ Line 2: Wrong import path
#### Step 3: Request Fix
**Prompt to Claude:**
```
This import is incorrect:
import { getServerSession } from 'next-auth';
Correct import path per official docs:
import { getServerSession } from 'next-auth/next';
Please fix this in the code.
```
**Result:** ✅ **Verified, working code in 10 min**
---
### ✅ Workaround #3: Example-Driven Generation
**Strategy:** Paste working code example first
**ŠPATNĚ (no example):**
```
Prompt: "Create Prisma query to find user by email with related posts"
Claude: [may hallucinate Prisma methods]
```
**DOBŘE (with real example):**
```
Prompt: """Here's a working Prisma query example from my codebase:
```typescript
// Example 1: Find unique with relations
const userWithPosts = await prisma.user.findUnique({
where: { id: userId },
include: { posts: true }
});
// Example 2: Find many with filtering
const users = await prisma.user.findMany({
where: { email: { contains: 'example.com' } },
include: { profile: true }
});
```
Now create similar query to:
- Find user by email (exact match)
- Include related posts AND comments
- Sort posts by created_at DESC
Use same pattern as examples above."""
Claude: [generates query following exact pattern from examples]
```
**Result:** ✅ **95%+ accuracy** (Claude mirrors working patterns)
---
### ✅ Workaround #4: Constraint-Based Prompting
**Strategy:** Explicitly ban common hallucinations
**Template:**
```
Task: [Your task]
CONSTRAINTS (strictly follow):
✅ DO use:
- Standard library functions only
- [List safe APIs you know exist]
❌ DO NOT use:
- Beta/experimental features
- Undocumented helper functions
- Methods you're uncertain about
If you need a feature that's not in "DO use" list:
1. Describe what you need
2. Ask me to confirm API exists
3. Wait for my confirmation before generating
Generate: [Task]
```
**Example:**
```
Task: Create React form with validation
CONSTRAINTS:
✅ DO use:
- useState, useEffect (React basics)
- onChange, onSubmit (standard events)
- <form>, <input>, <button> (HTML)
❌ DO NOT use:
- useServerValidation (doesn't exist)
- form.validate() (not standard)
- Any React hook not in "DO use" list
If you need validation:
1. Describe validation approach
2. Ask me to confirm library choice
3. Wait for my approval
Generate: Contact form with email + message fields
```
**Claude Response:**
```
I need form validation. Options:
1. Manual validation with useState
2. Use a library like react-hook-form or formik
Which approach should I use?
```
**Your Reply:** "Use react-hook-form"
**Claude:** [Generates form using confirmed library] ✅
---
## 3. Long-Term Solutions
### 🎯 Solution #1: Build Personal Prompt Library
**Strategy:** Create reusable, verified prompts for common tasks
**Setup (30 minutes, one-time):**
**File:** `~/ai-prompts/nextjs-api-route.md`
```markdown
# Next.js 14 API Route Generation Template
## Verified APIs (Updated: 2024-01-18)
### Route Handler Exports
```typescript
export async function GET(request: Request)
export async function POST(request: Request)
export async function PUT(request: Request)
export async function DELETE(request: Request)
export async function PATCH(request: Request)
```
### Request Object
- request.json() → Promise<any>
- request.formData() → Promise<FormData>
- request.nextUrl → URL object
- request.cookies → RequestCookies
### Response Creation
```typescript
import { NextResponse } from 'next/server';
NextResponse.json(data, { status: 200 })
NextResponse.redirect(url)
NextResponse.rewrite(url)
```
### Server-Only Imports
```typescript
import { cookies } from 'next/headers';
import { headers } from 'next/headers';
```
## Prompt Template
"""
Create Next.js 14 API route for [FEATURE].
Use ONLY these verified APIs:
[paste verified APIs section above]
Requirements:
- [Your specific requirements]
- Error handling with try/catch
- Proper HTTP status codes
- Type safety with TypeScript
Generate: app/api/[YOUR_PATH]/route.ts
"""
```
**Usage:**
1. Open `~/ai-prompts/nextjs-api-route.md`
2. Copy template
3. Paste into Claude
4. Fill [YOUR_PATH] and [FEATURE]
5. Get verified code ✅
**Benefit:**
- ✅ **Zero hallucinations** (uses pre-verified APIs)
- ✅ **Fast** (no need to look up docs every time)
- ✅ **Consistent** (same patterns across codebase)
**Time Investment:**
- Initial setup: 30 min per template
- Create ~5-10 templates for common tasks
- **ROI:** Saves 10-15 min per code generation task
---
### 🎯 Solution #2: Two-Phase Verification Workflow
**Strategy:** Separate generation from verification
**Phase 1: Fast Generation (Claude)**
```
Prompt: "Generate complete user authentication system.
Focus on completeness, not verification.
I will verify APIs afterward."
Time: 5 minutes
Output: Complete codebase (may have hallucinations)
```
**Phase 2: Automated Verification (Tooling)**
**Tool 1: Static Analysis (TypeScript Compiler)**
```bash
# Run TypeScript compiler
npx tsc --noEmit
# Output:
# ❌ Error: Cannot find module 'next/server-state'
# ❌ Error: Property 'findUniqueOrCreate' does not exist
# All hallucinations caught automatically! ✅
```
**Tool 2: API Validation Script**
```python
# scripts/validate-apis.py
import re
import subprocess
def extract_imports(file_path):
with open(file_path) as f:
code = f.read()
# Extract all import statements
imports = re.findall(r'import .* from [\'"]([^\'"]+)[\'"]', code)
return imports
def verify_import(import_path):
# Try to resolve package
try:
result = subprocess.run(
['npm', 'list', import_path],
capture_output=True,
text=True
)
return import_path in result.stdout
except:
return False
# Check all TypeScript files
import glob
for file in glob.glob('**/*.ts', recursive=True):
imports = extract_imports(file)
for imp in imports:
if not verify_import(imp):
print(f'❌ {file}: Unknown import "{imp}"')
```
**Run Validation:**
```bash
python scripts/validate-apis.py
# Output:
# ❌ src/auth.ts: Unknown import "next/server-state"
# ❌ src/api/users.ts: Unknown import "prisma/smart-query"
```
**Phase 3: Fix Hallucinations (Claude)**
```
Prompt: "These imports don't exist:
- next/server-state
- prisma/smart-query
Replace with correct Next.js 14 and Prisma 5 APIs.
Refer to official documentation."
Time: 2 minutes
Output: Fixed code ✅
```
**Total Time:**
- Generation: 5 min
- Verification: 1 min (automated)
- Fixes: 2 min
- **Total: 8 min** vs 20 min manual coding ✅
---
### 🎯 Solution #3: Hybrid AI + Documentation Workflow
**Strategy:** Use AI for structure, official docs for specifics
**Step 1: Generate Scaffold (Claude)**
```
Prompt: "Generate file structure and function signatures for user registration system.
DO NOT implement details yet - just structure:
- File paths
- Function names
- Type definitions
- Comments describing what each function does
I will fill in implementation details manually from docs."
Time: 3 min
```
**Claude Output:**
```typescript
// src/lib/auth/register.ts
/**
* Registers new user in database
* TODO: Implement using Prisma
*/
export async function registerUser(data: RegisterData): Promise<User> {
// [IMPLEMENT: Prisma user creation]
}
/**
* Sends verification email
* TODO: Implement using email service
*/
export async function sendVerificationEmail(user: User): Promise<void> {
// [IMPLEMENT: Email sending logic]
}
type RegisterData = {
email: string;
password: string;
name: string;
};
```
**Step 2: Implement Details (You + Docs)**
```typescript
// Fill in [IMPLEMENT] sections using official Prisma/Email docs
export async function registerUser(data: RegisterData): Promise<User> {
// ✅ Copy-paste from Prisma docs (guaranteed correct)
return await prisma.user.create({
data: {
email: data.email,
name: data.name,
password: await hash(data.password)
}
});
}
```
**Benefits:**
- ✅ **AI handles boring structure** (file organization, type definitions)
- ✅ **You handle critical logic** (using verified docs)
- ✅ **Zero hallucinations** (no AI-generated API calls)
- ✅ **Faster than pure manual** (AI does scaffolding)
**Time:**
- Pure manual: 60 min
- Pure AI: 20 min gen + 30 min debugging = 50 min
- Hybrid: 15 min structure + 25 min implementation = **40 min** ✅
---
## 4. Tool-Specific Limitations & Fixes
### Claude Pro Limitations
#### Limitation #1: Context Window Overflow
**Problem:** Claude má 200K token limit, ale při překročení:
- ❌ Začíná "zapomínat" starší části konverzace
- ❌ Inconsistent responses
- ❌ Odkazuje na věci, které neřekl
**Symptom:**
```
You (earlier): "Use PostgreSQL"
... [50K tokens later] ...
Claude: "Here's the MongoDB setup..." ❌ (forgot PostgreSQL requirement)
```
**Detection:**
```
If conversation feels "confused" or inconsistent:
1. Check message count (>50 messages = likely near limit)
2. Claude references things out of context
3. Recommendations contradict earlier advice
```
**Workarounds:**
✅ **Workaround 1: Context Compression**
```
Every 20-30 messages, ask Claude:
"Summarize our conversation so far in bullet points:
- Key decisions
- Technical choices
- Current implementation status
- Next steps"
Save summary → Start new conversation → Paste summary at top
```
✅ **Workaround 2: Project Feature**
```
Use Claude Projects:
- Store key decisions in Project knowledge base
- Upload architecture docs
- Claude has persistent context
- No need to re-explain every chat
```
✅ **Workaround 3: Segmented Conversations**
```
Don't use single conversation for entire project.
Instead:
- Chat 1: "Architecture planning" (save summary)
- Chat 2: "Auth implementation" (paste arch summary)
- Chat 3: "Payment integration" (paste relevant context only)
Each chat: focused, under context limit ✅
```
---
#### Limitation #2: Rate Limiting
**Problem:** Claude Pro has usage limits:
- ❌ ~45 messages per 5 hours (varies)
- ❌ No official rate limit docs
- ❌ Hits limit → "You've reached usage limit" error
**Symptom:**
```
Claude: "You've reached your usage cap. Please try again in X hours."
```
**Detection:**
- Appears after heavy usage day
- More likely with long messages (high token usage)
**Workarounds:**
✅ **Workaround 1: Message Batching**
```
ŠPATNĚ (many small messages):
Prompt 1: "Generate function A"
Prompt 2: "Generate function B"
Prompt 3: "Generate function C"
[Uses 3 messages]
DOBŘE (single batch):
"Generate these 3 functions:
1. Function A: [description]
2. Function B: [description]
3. Function C: [description]"
[Uses 1 message] ✅
```
✅ **Workaround 2: Backup Tool**
```
Setup:
- Primary: Claude Pro (high quality)
- Backup: ChatGPT Plus or Claude API (when rate limited)
When Claude hits limit:
→ Switch to ChatGPT for less critical tasks
→ Save Claude for complex reasoning
```
✅ **Workaround 3: Claude API**
```
If hitting limits frequently:
Consider Claude API ($20 credit/month):
- Pay per token (~$3/million input tokens)
- No rate limits (only token budget)
- More predictable costs
- Can process high volume
ROI:
- Claude Pro: $20/mo, ~45 msgs/5hr
- Claude API: $20/mo, ~6,000 messages (assuming 1K tokens each)
For heavy users: API is cheaper ✅
```
---
### ChatGPT Plus Limitations
#### Limitation #1: Outdated Knowledge (Training Cutoff)
**Problem:** ChatGPT training data cutoff = October 2023
- ❌ Doesn't know Next.js 14 (released Oct 2023)
- ❌ Doesn't know React 19
- ❌ Outdated library recommendations
**Example Hallucination:**
```
You: "Best way to fetch data in Next.js 14?"
ChatGPT: "Use getServerSideProps..." ❌
(Outdated - Next.js 14 uses Server Components + fetch)
Correct: Server Components with native fetch() ✅
```
**Workarounds:**
✅ **Workaround 1: Web Browsing Mode**
```
Activate ChatGPT browsing:
1. Start message with "Search the web:"
2. ChatGPT uses Bing to find current info
Prompt:
"Search the web: Next.js 14 data fetching best practices 2024"
ChatGPT: [searches current docs, provides up-to-date answer] ✅
```
✅ **Workaround 2: Explicit Version Declaration**
```
Prompt:
"Use Next.js 14 (App Router, React Server Components).
Key changes from Next.js 13:
- No getServerSideProps (deprecated)
- Use Server Components + fetch
- Automatic caching
Now help me: [your task]"
ChatGPT: [follows your guidance instead of outdated training] ✅
```
---
### GitHub Copilot Limitations
#### Limitation #1: Poor Context Awareness
**Problem:** Copilot only sees ~20 lines around cursor
- ❌ Doesn't know full file context
- ❌ Doesn't know other files in project
- ❌ Suggests code that doesn't match project patterns
**Example:**
```typescript
// In file: src/services/auth.ts
// You've been using custom Error class throughout:
class AuthError extends Error {
statusCode: number;
// ...
}
// Copilot suggests:
throw new Error("Invalid token"); ❌ (generic Error, not AuthError)
// Should suggest:
throw new AuthError("Invalid token", 401); ✅
```
**Workarounds:**
✅ **Workaround 1: Inline Context Comments**
```typescript
// Project pattern: Always use AuthError for auth failures
// Example: throw new AuthError("message", statusCode)
export async function validateToken(token: string) {
if (!token) {
throw new AuthError // <-- Copilot now suggests correctly ✅
}
}
```
✅ **Workaround 2: Cursor > Copilot for Multi-File**
```
For tasks requiring multi-file awareness:
→ Use Cursor Composer instead of Copilot
→ Cursor sees full codebase context
→ Suggestions match project patterns ✅
```
---
## 5. Decision Framework: When AI Won't Help
### ❌ Give Up on AI When:
**1. Highly Specialized Domain Knowledge Required**
```
❌ BAD for AI:
- Medical diagnosis algorithms (liability, accuracy critical)
- Financial trading strategies (need real-time data + domain expertise)
- Legal contract drafting (requires bar-level knowledge)
✅ ALTERNATIVE:
- Hire domain expert
- Use AI for scaffolding, expert for details
```
**2. Debugging Obscure/Intermittent Bugs**
```
❌ BAD for AI:
"My app crashes randomly every 2-3 days, no error logs, can't reproduce"
AI limitation:
- Needs reproducible test case
- Can't observe running system
- Limited debugging context
✅ ALTERNATIVE:
- Add extensive logging
- Use APM tools (DataDog, Sentry)
- Manual debugging with debugger
- Once reproducible → AI can help
```
**3. Greenfield Architecture Decisions**
```
❌ BAD for AI:
"Design architecture for 100M user social network"
AI limitation:
- No access to your specific constraints
- Can't assess team expertise
- Doesn't know your timeline/budget
- Generic advice, not tailored
✅ ALTERNATIVE:
- Hire experienced architect
- Use AI for research (gather options)
- Human makes final decision
```
**4. Security-Critical Code**
```
❌ BAD for AI alone:
- Cryptography implementation
- Payment processing
- Authentication systems
AI limitation:
- May introduce subtle vulnerabilities
- Hallucinate security best practices
- No security audit capability
✅ ALTERNATIVE:
- AI generates scaffold
- Security expert reviews
- Penetration testing
- Use battle-tested libraries (don't reinvent)
```
---
### ✅ Hybrid Workflow: AI + Human
**Pattern: AI for Speed, Human for Accuracy**
**Example: Payment Integration**
**Step 1: AI Research (5 min)**
```
Prompt to Claude:
"Research Stripe payment integration best practices:
- Common pitfalls
- Security considerations
- Webhook setup
- Idempotency
Provide summary + links to official docs"
Output: Research summary ✅
```
**Step 2: AI Scaffold (10 min)**
```
Prompt: "Generate file structure + function signatures for Stripe integration.
DO NOT implement yet - just structure."
Output: Scaffold ✅
```
**Step 3: Human Implementation (30 min)**
```
- Read Stripe official docs
- Implement critical functions manually
- Copy-paste exact examples from Stripe docs
- Test with Stripe test mode
Output: Production-ready code ✅
```
**Step 4: AI Documentation (5 min)**
```
Prompt: "Generate README for this Stripe integration:
[paste code]
Include:
- Setup steps
- Environment variables
- Testing guide
- Troubleshooting"
Output: Documentation ✅
```
**Total:**
- AI: 20 min (research + scaffold + docs)
- Human: 30 min (critical implementation)
- **50 min total** vs 90 min pure manual ✅
---
## 6. Emergency Playbook
### 🚨 AI Completely Blocked → What Now?
**Scenario 1: Claude/ChatGPT Rate Limited**
**Immediate Actions (< 5 min):**
1. ✅ Switch to backup tool (ChatGPT ↔ Claude)
2. ✅ Use free tier of other tools (Gemini, Perplexity)
3. ✅ Fall back to GitHub Copilot (VS Code)
**Short-Term (< 30 min):**
1. ✅ Sign up for Claude API (pay-per-use)
2. ✅ Use alternative accounts if available
3. ✅ Check when rate limit resets
**Long-Term Prevention:**
1. ✅ Always have 2+ AI tool subscriptions
2. ✅ Implement caching to reduce API calls
3. ✅ Batch requests
---
**Scenario 2: AI Consistently Giving Wrong Answers**
**Debug Checklist:**
```markdown
1. ❓ Is your prompt clear and specific?
→ Try reformulating with more context
2. ❓ Are you providing outdated info?
→ Check if docs you pasted are current
3. ❓ Is task too complex for AI?
→ Break into smaller subtasks
4. ❓ Is AI hallucinating specific APIs?
→ Switch to documentation-first approach
5. ❓ Are you using wrong tool for task?
→ Claude for reasoning, ChatGPT for code gen, Copilot for snippets
```
**If still failing:**
→ Accept this task needs manual approach ✅
---
**Scenario 3: Critical Production Bug, AI Can't Help**
**Manual Debugging Workflow:**
```markdown
**Stop using AI when:**
- Bug is time-critical (production down)
- Requires real-time system access
- Needs deep debugging (memory dumps, profiling)
**Manual Steps:**
1. ✅ Check error logs (Sentry, CloudWatch, etc.)
2. ✅ Reproduce bug locally
3. ✅ Use debugger (breakpoints, step-through)
4. ✅ Add detailed logging
5. ✅ Isolate failing component
6. ✅ Test fix thoroughly
**Time to Resolution:**
- With AI: 2 hours (if AI can help)
- Pure manual: 1 hour (focused debugging)
→ Manual faster for critical bugs ✅
**Post-Fix:**
- Document root cause
- Add test case
- Use AI to generate preventive tests
```
---
## Závěr & Takeaways
### ✅ Key Lessons
**1. AI Has Real Limitations - Accept Them**
- ❌ AI is NOT a replacement for expertise
- ✅ AI is a productivity multiplier
- ❌ AI can't verify facts in real-time
- ✅ AI can generate options quickly
**2. Workarounds Are Essential**
- ✅ Documentation-first prompting
- ✅ Verification workflows
- ✅ Hybrid AI + manual approaches
- ✅ Multiple tool strategy
**3. Know When to Stop Using AI**
- ❌ Security-critical code (use AI for scaffold, expert for implementation)
- ❌ Domain-specific expertise (hire expert, use AI for research)
- ❌ Production incidents (manual debugging faster)
**4. Build Your Own Systems**
- ✅ Prompt libraries (verified templates)
- ✅ Verification scripts (catch hallucinations)
- ✅ Backup tools (never rely on single AI)
### 📊 Success Metrics
**Track These Weekly:**
- **Hallucination Rate:** Aim for <5% (with workarounds)
- **Verification Time:** <10 min per code generation task
- **Manual Fallback:** <20% of tasks need pure manual
- **Tool Availability:** 95%+ uptime (with backups)
### 🎯 30-Day Action Plan
**Week 1: Implement Workarounds**
- ✅ Create 3-5 verified prompt templates
- ✅ Set up TypeScript/linting for auto-verification
- ✅ Test documentation-first approach
**Week 2: Backup Systems**
- ✅ Subscribe to 2nd AI tool
- ✅ Learn alternative workflows
- ✅ Test emergency fallbacks
**Week 3: Hybrid Workflows**
- ✅ Practice AI scaffold + manual implementation
- ✅ Document when AI helps vs when manual is faster
- ✅ Optimize workflow split
**Week 4: Measurement & Iteration**
- ✅ Track hallucination rate
- ✅ Measure time savings
- ✅ Refine templates based on learnings
---
**Remember: Perfect AI doesn't exist. Effective AI workflows = embracing limitations + building robust workarounds. 🛠️**
**Pro tip: The developers who get most value from AI are those who know EXACTLY when NOT to use it.** 💡
## Jak Vyřešit Problém s Vymýšlením Neexistujících API 🔧
---
## 1. Analýza Konkrétního Omezení
### 🎯 Přesná Identifikace Problému
**Váš problém:** Claude generuje kód s neexistujícími funkcemi/API
**Technická příčina:**
- **Training data cutoff:** Claude byl natrénován na datech do ledna 2025
- **Probabilistic generation:** AI predikuje "pravděpodobný" kód, ne "fakticky správný"
- **Pattern matching:** Pokud vidí podobné API, extrapoluje že existují i jiné podobné
- **No runtime verification:** Claude NEMŮŽE ověřit, že API skutečně existuje
**Konkrétní příklady hallucinations:**
**Hallucination #1: Non-existent Next.js API**
```typescript
// ❌ HALLUCINATION - Claude vymyslel
import { useServerState } from 'next/server-state'; // doesn't exist!
// ✅ SKUTEČNOST - správný Next.js způsob
import { cookies } from 'next/headers';
const cookieStore = cookies();
```
**Hallucination #2: Invented Python Library Method**
```python
# ❌ HALLUCINATION
import pandas as pd
df.smart_fill_missing() # pandas nemá tuto metodu!
# ✅ SKUTEČNOST
df.fillna(method='ffill') # správná pandas metoda
```
**Hallucination #3: Wrong Prisma Syntax**
```typescript
// ❌ HALLUCINATION - Claude kombinuje různé API styly
await prisma.user.findUniqueOrCreate({ // neexistuje!
where: { email },
create: { email, name }
});
// ✅ SKUTEČNOST - dvě samostatné metody
const user = await prisma.user.findUnique({ where: { email } });
if (!user) {
await prisma.user.create({ data: { email, name } });
}
```
---
### ⚠️ Kdy Se To Projevuje
**HIGH RISK (časté hallucinations):**
- ✅ **Nové/beta features** knihoven (Next.js 14, React 19)
- ✅ **Kombinace multiple APIs** (když Claude "sklada" různé knihovny)
- ✅ **Méně populární libraries** (malý training data)
- ✅ **Internal/proprietary APIs** (Claude to NIKDY neviděl)
- ✅ **Deprecated APIs** (Claude zná staré verze)
**LOW RISK (zřídka hallucinations):**
- ❌ **Established stable APIs** (React základy, Express.js core)
- ❌ **Standard library** functions (Python builtin, Node.js core)
- ❌ **Well-documented major frameworks** (Django ORM, Rails ActiveRecord)
**Severity:** 🔴 **CRITICAL BLOCKER**
- Generovaný kód NEfunguje out-of-the-box
- Requires manual debugging (časově náročné)
- Erodes trust v AI outputs
---
## 2. Immediate Workarounds (Použitelné DNES)
### ✅ Workaround #1: Forced Documentation Reference
**Strategy:** Nutně zahrň dokumentaci přímo do promptu
**Implementace:**
**ŠPATNĚ (bez dokumentace):**
```
Prompt: "Create Next.js 14 API route for user registration"
Claude: [generates code with potentially hallucinated APIs]
```
**DOBŘE (s dokumentací):**
```
Prompt: """Create Next.js 14 API route for user registration.
Use ONLY these documented Next.js 14 APIs:
ROUTE HANDLERS (app/api/*/route.ts):
- export async function GET(request: Request)
- export async function POST(request: Request)
- NextRequest: request.nextUrl, request.cookies, request.json()
- NextResponse: NextResponse.json(data, { status })
AVAILABLE FUNCTIONS:
- import { cookies } from 'next/headers'
- import { headers } from 'next/headers'
- import { redirect } from 'next/navigation'
Do NOT use:
- 'useServerState' (doesn't exist)
- 'getServerSession' (wrong import path)
- Any API not listed above
Generate implementation using ONLY documented APIs above."""
Claude: [generates code strictly using provided APIs]
```
**Result:** ✅ **90%+ reduction in hallucinations**
---
**Template for Your Use Case:**
```markdown
# Template: Hallucination-Proof Prompt
**Task:** [Your task description]
**Tech Stack Documentation (ONLY use these APIs):**
## Library 1: [Name + Version]
**Imports:**
- import { X } from 'library/path'
- import { Y } from 'library/other'
**Available Methods:**
- object.method(params) → returns X
- object.method2(params) → returns Y
**Examples:**
[paste 1-2 code examples from official docs]
## Library 2: [Name + Version]
[... same structure ...]
**RULES:**
1. Use ONLY methods listed above
2. Do NOT invent methods not documented
3. If uncertain, ask me for clarification
4. Reference specific example numbers when using patterns
**Now implement:** [Your specific task]
```
**Savings:**
- **Before:** 60 min coding + 30 min debugging hallucinations = 90 min
- **After:** 75 min coding (slower prompting, but correct) = 75 min
- **Net savings:** 15 min + **zero frustration** ✅
---
### ✅ Workaround #2: Verification-First Workflow
**Strategy:** Generate → Verify → Fix loop
**Step-by-Step:**
#### Step 1: Generate with Hallucination Awareness
**Prompt:**
```
Generate Next.js user registration API route.
IMPORTANT: You may not know all latest Next.js 14 APIs.
For any function/import you use, add a comment:
// VERIFY: [function name] - check official docs
Example:
import { getServerSession } from 'next-auth'; // VERIFY: getServerSession import path
This helps me quickly check uncertain APIs.
```
**Claude Output:**
```typescript
import { cookies } from 'next/headers'; // VERIFY: cookies import (Next.js 14)
import { getServerSession } from 'next-auth'; // VERIFY: getServerSession import
import { NextResponse } from 'next/server'; // VERIFY: NextResponse (Next.js 14)
export async function POST(request: Request) {
const session = await getServerSession(); // VERIFY: getServerSession usage
// ... rest of code
}
```
#### Step 2: Focused Verification (10 min)
**Check only // VERIFY items:**
1. Open Next.js 14 docs
2. Search for "cookies" → ✅ Exists
3. Search for "getServerSession" → ❌ Wrong import path!
- **Actual:** import { getServerSession } from "next-auth/next"
4. Search for "NextResponse" → ✅ Exists
**Fix List:**
- ❌ Line 2: Wrong import path
#### Step 3: Request Fix
**Prompt to Claude:**
```
This import is incorrect:
import { getServerSession } from 'next-auth';
Correct import path per official docs:
import { getServerSession } from 'next-auth/next';
Please fix this in the code.
```
**Result:** ✅ **Verified, working code in 10 min**
---
### ✅ Workaround #3: Example-Driven Generation
**Strategy:** Paste working code example first
**ŠPATNĚ (no example):**
```
Prompt: "Create Prisma query to find user by email with related posts"
Claude: [may hallucinate Prisma methods]
```
**DOBŘE (with real example):**
```
Prompt: """Here's a working Prisma query example from my codebase:
```typescript
// Example 1: Find unique with relations
const userWithPosts = await prisma.user.findUnique({
where: { id: userId },
include: { posts: true }
});
// Example 2: Find many with filtering
const users = await prisma.user.findMany({
where: { email: { contains: 'example.com' } },
include: { profile: true }
});
```
Now create similar query to:
- Find user by email (exact match)
- Include related posts AND comments
- Sort posts by created_at DESC
Use same pattern as examples above."""
Claude: [generates query following exact pattern from examples]
```
**Result:** ✅ **95%+ accuracy** (Claude mirrors working patterns)
---
### ✅ Workaround #4: Constraint-Based Prompting
**Strategy:** Explicitly ban common hallucinations
**Template:**
```
Task: [Your task]
CONSTRAINTS (strictly follow):
✅ DO use:
- Standard library functions only
- [List safe APIs you know exist]
❌ DO NOT use:
- Beta/experimental features
- Undocumented helper functions
- Methods you're uncertain about
If you need a feature that's not in "DO use" list:
1. Describe what you need
2. Ask me to confirm API exists
3. Wait for my confirmation before generating
Generate: [Task]
```
**Example:**
```
Task: Create React form with validation
CONSTRAINTS:
✅ DO use:
- useState, useEffect (React basics)
- onChange, onSubmit (standard events)
- <form>, <input>, <button> (HTML)
❌ DO NOT use:
- useServerValidation (doesn't exist)
- form.validate() (not standard)
- Any React hook not in "DO use" list
If you need validation:
1. Describe validation approach
2. Ask me to confirm library choice
3. Wait for my approval
Generate: Contact form with email + message fields
```
**Claude Response:**
```
I need form validation. Options:
1. Manual validation with useState
2. Use a library like react-hook-form or formik
Which approach should I use?
```
**Your Reply:** "Use react-hook-form"
**Claude:** [Generates form using confirmed library] ✅
---
## 3. Long-Term Solutions
### 🎯 Solution #1: Build Personal Prompt Library
**Strategy:** Create reusable, verified prompts for common tasks
**Setup (30 minutes, one-time):**
**File:** `~/ai-prompts/nextjs-api-route.md`
```markdown
# Next.js 14 API Route Generation Template
## Verified APIs (Updated: 2024-01-18)
### Route Handler Exports
```typescript
export async function GET(request: Request)
export async function POST(request: Request)
export async function PUT(request: Request)
export async function DELETE(request: Request)
export async function PATCH(request: Request)
```
### Request Object
- request.json() → Promise<any>
- request.formData() → Promise<FormData>
- request.nextUrl → URL object
- request.cookies → RequestCookies
### Response Creation
```typescript
import { NextResponse } from 'next/server';
NextResponse.json(data, { status: 200 })
NextResponse.redirect(url)
NextResponse.rewrite(url)
```
### Server-Only Imports
```typescript
import { cookies } from 'next/headers';
import { headers } from 'next/headers';
```
## Prompt Template
"""
Create Next.js 14 API route for [FEATURE].
Use ONLY these verified APIs:
[paste verified APIs section above]
Requirements:
- [Your specific requirements]
- Error handling with try/catch
- Proper HTTP status codes
- Type safety with TypeScript
Generate: app/api/[YOUR_PATH]/route.ts
"""
```
**Usage:**
1. Open `~/ai-prompts/nextjs-api-route.md`
2. Copy template
3. Paste into Claude
4. Fill [YOUR_PATH] and [FEATURE]
5. Get verified code ✅
**Benefit:**
- ✅ **Zero hallucinations** (uses pre-verified APIs)
- ✅ **Fast** (no need to look up docs every time)
- ✅ **Consistent** (same patterns across codebase)
**Time Investment:**
- Initial setup: 30 min per template
- Create ~5-10 templates for common tasks
- **ROI:** Saves 10-15 min per code generation task
---
### 🎯 Solution #2: Two-Phase Verification Workflow
**Strategy:** Separate generation from verification
**Phase 1: Fast Generation (Claude)**
```
Prompt: "Generate complete user authentication system.
Focus on completeness, not verification.
I will verify APIs afterward."
Time: 5 minutes
Output: Complete codebase (may have hallucinations)
```
**Phase 2: Automated Verification (Tooling)**
**Tool 1: Static Analysis (TypeScript Compiler)**
```bash
# Run TypeScript compiler
npx tsc --noEmit
# Output:
# ❌ Error: Cannot find module 'next/server-state'
# ❌ Error: Property 'findUniqueOrCreate' does not exist
# All hallucinations caught automatically! ✅
```
**Tool 2: API Validation Script**
```python
# scripts/validate-apis.py
import re
import subprocess
def extract_imports(file_path):
with open(file_path) as f:
code = f.read()
# Extract all import statements
imports = re.findall(r'import .* from [\'"]([^\'"]+)[\'"]', code)
return imports
def verify_import(import_path):
# Try to resolve package
try:
result = subprocess.run(
['npm', 'list', import_path],
capture_output=True,
text=True
)
return import_path in result.stdout
except:
return False
# Check all TypeScript files
import glob
for file in glob.glob('**/*.ts', recursive=True):
imports = extract_imports(file)
for imp in imports:
if not verify_import(imp):
print(f'❌ {file}: Unknown import "{imp}"')
```
**Run Validation:**
```bash
python scripts/validate-apis.py
# Output:
# ❌ src/auth.ts: Unknown import "next/server-state"
# ❌ src/api/users.ts: Unknown import "prisma/smart-query"
```
**Phase 3: Fix Hallucinations (Claude)**
```
Prompt: "These imports don't exist:
- next/server-state
- prisma/smart-query
Replace with correct Next.js 14 and Prisma 5 APIs.
Refer to official documentation."
Time: 2 minutes
Output: Fixed code ✅
```
**Total Time:**
- Generation: 5 min
- Verification: 1 min (automated)
- Fixes: 2 min
- **Total: 8 min** vs 20 min manual coding ✅
---
### 🎯 Solution #3: Hybrid AI + Documentation Workflow
**Strategy:** Use AI for structure, official docs for specifics
**Step 1: Generate Scaffold (Claude)**
```
Prompt: "Generate file structure and function signatures for user registration system.
DO NOT implement details yet - just structure:
- File paths
- Function names
- Type definitions
- Comments describing what each function does
I will fill in implementation details manually from docs."
Time: 3 min
```
**Claude Output:**
```typescript
// src/lib/auth/register.ts
/**
* Registers new user in database
* TODO: Implement using Prisma
*/
export async function registerUser(data: RegisterData): Promise<User> {
// [IMPLEMENT: Prisma user creation]
}
/**
* Sends verification email
* TODO: Implement using email service
*/
export async function sendVerificationEmail(user: User): Promise<void> {
// [IMPLEMENT: Email sending logic]
}
type RegisterData = {
email: string;
password: string;
name: string;
};
```
**Step 2: Implement Details (You + Docs)**
```typescript
// Fill in [IMPLEMENT] sections using official Prisma/Email docs
export async function registerUser(data: RegisterData): Promise<User> {
// ✅ Copy-paste from Prisma docs (guaranteed correct)
return await prisma.user.create({
data: {
email: data.email,
name: data.name,
password: await hash(data.password)
}
});
}
```
**Benefits:**
- ✅ **AI handles boring structure** (file organization, type definitions)
- ✅ **You handle critical logic** (using verified docs)
- ✅ **Zero hallucinations** (no AI-generated API calls)
- ✅ **Faster than pure manual** (AI does scaffolding)
**Time:**
- Pure manual: 60 min
- Pure AI: 20 min gen + 30 min debugging = 50 min
- Hybrid: 15 min structure + 25 min implementation = **40 min** ✅
---
## 4. Tool-Specific Limitations & Fixes
### Claude Pro Limitations
#### Limitation #1: Context Window Overflow
**Problem:** Claude má 200K token limit, ale při překročení:
- ❌ Začíná "zapomínat" starší části konverzace
- ❌ Inconsistent responses
- ❌ Odkazuje na věci, které neřekl
**Symptom:**
```
You (earlier): "Use PostgreSQL"
... [50K tokens later] ...
Claude: "Here's the MongoDB setup..." ❌ (forgot PostgreSQL requirement)
```
**Detection:**
```
If conversation feels "confused" or inconsistent:
1. Check message count (>50 messages = likely near limit)
2. Claude references things out of context
3. Recommendations contradict earlier advice
```
**Workarounds:**
✅ **Workaround 1: Context Compression**
```
Every 20-30 messages, ask Claude:
"Summarize our conversation so far in bullet points:
- Key decisions
- Technical choices
- Current implementation status
- Next steps"
Save summary → Start new conversation → Paste summary at top
```
✅ **Workaround 2: Project Feature**
```
Use Claude Projects:
- Store key decisions in Project knowledge base
- Upload architecture docs
- Claude has persistent context
- No need to re-explain every chat
```
✅ **Workaround 3: Segmented Conversations**
```
Don't use single conversation for entire project.
Instead:
- Chat 1: "Architecture planning" (save summary)
- Chat 2: "Auth implementation" (paste arch summary)
- Chat 3: "Payment integration" (paste relevant context only)
Each chat: focused, under context limit ✅
```
---
#### Limitation #2: Rate Limiting
**Problem:** Claude Pro has usage limits:
- ❌ ~45 messages per 5 hours (varies)
- ❌ No official rate limit docs
- ❌ Hits limit → "You've reached usage limit" error
**Symptom:**
```
Claude: "You've reached your usage cap. Please try again in X hours."
```
**Detection:**
- Appears after heavy usage day
- More likely with long messages (high token usage)
**Workarounds:**
✅ **Workaround 1: Message Batching**
```
ŠPATNĚ (many small messages):
Prompt 1: "Generate function A"
Prompt 2: "Generate function B"
Prompt 3: "Generate function C"
[Uses 3 messages]
DOBŘE (single batch):
"Generate these 3 functions:
1. Function A: [description]
2. Function B: [description]
3. Function C: [description]"
[Uses 1 message] ✅
```
✅ **Workaround 2: Backup Tool**
```
Setup:
- Primary: Claude Pro (high quality)
- Backup: ChatGPT Plus or Claude API (when rate limited)
When Claude hits limit:
→ Switch to ChatGPT for less critical tasks
→ Save Claude for complex reasoning
```
✅ **Workaround 3: Claude API**
```
If hitting limits frequently:
Consider Claude API ($20 credit/month):
- Pay per token (~$3/million input tokens)
- No rate limits (only token budget)
- More predictable costs
- Can process high volume
ROI:
- Claude Pro: $20/mo, ~45 msgs/5hr
- Claude API: $20/mo, ~6,000 messages (assuming 1K tokens each)
For heavy users: API is cheaper ✅
```
---
### ChatGPT Plus Limitations
#### Limitation #1: Outdated Knowledge (Training Cutoff)
**Problem:** ChatGPT training data cutoff = October 2023
- ❌ Doesn't know Next.js 14 (released Oct 2023)
- ❌ Doesn't know React 19
- ❌ Outdated library recommendations
**Example Hallucination:**
```
You: "Best way to fetch data in Next.js 14?"
ChatGPT: "Use getServerSideProps..." ❌
(Outdated - Next.js 14 uses Server Components + fetch)
Correct: Server Components with native fetch() ✅
```
**Workarounds:**
✅ **Workaround 1: Web Browsing Mode**
```
Activate ChatGPT browsing:
1. Start message with "Search the web:"
2. ChatGPT uses Bing to find current info
Prompt:
"Search the web: Next.js 14 data fetching best practices 2024"
ChatGPT: [searches current docs, provides up-to-date answer] ✅
```
✅ **Workaround 2: Explicit Version Declaration**
```
Prompt:
"Use Next.js 14 (App Router, React Server Components).
Key changes from Next.js 13:
- No getServerSideProps (deprecated)
- Use Server Components + fetch
- Automatic caching
Now help me: [your task]"
ChatGPT: [follows your guidance instead of outdated training] ✅
```
---
### GitHub Copilot Limitations
#### Limitation #1: Poor Context Awareness
**Problem:** Copilot only sees ~20 lines around cursor
- ❌ Doesn't know full file context
- ❌ Doesn't know other files in project
- ❌ Suggests code that doesn't match project patterns
**Example:**
```typescript
// In file: src/services/auth.ts
// You've been using custom Error class throughout:
class AuthError extends Error {
statusCode: number;
// ...
}
// Copilot suggests:
throw new Error("Invalid token"); ❌ (generic Error, not AuthError)
// Should suggest:
throw new AuthError("Invalid token", 401); ✅
```
**Workarounds:**
✅ **Workaround 1: Inline Context Comments**
```typescript
// Project pattern: Always use AuthError for auth failures
// Example: throw new AuthError("message", statusCode)
export async function validateToken(token: string) {
if (!token) {
throw new AuthError // <-- Copilot now suggests correctly ✅
}
}
```
✅ **Workaround 2: Cursor > Copilot for Multi-File**
```
For tasks requiring multi-file awareness:
→ Use Cursor Composer instead of Copilot
→ Cursor sees full codebase context
→ Suggestions match project patterns ✅
```
---
## 5. Decision Framework: When AI Won't Help
### ❌ Give Up on AI When:
**1. Highly Specialized Domain Knowledge Required**
```
❌ BAD for AI:
- Medical diagnosis algorithms (liability, accuracy critical)
- Financial trading strategies (need real-time data + domain expertise)
- Legal contract drafting (requires bar-level knowledge)
✅ ALTERNATIVE:
- Hire domain expert
- Use AI for scaffolding, expert for details
```
**2. Debugging Obscure/Intermittent Bugs**
```
❌ BAD for AI:
"My app crashes randomly every 2-3 days, no error logs, can't reproduce"
AI limitation:
- Needs reproducible test case
- Can't observe running system
- Limited debugging context
✅ ALTERNATIVE:
- Add extensive logging
- Use APM tools (DataDog, Sentry)
- Manual debugging with debugger
- Once reproducible → AI can help
```
**3. Greenfield Architecture Decisions**
```
❌ BAD for AI:
"Design architecture for 100M user social network"
AI limitation:
- No access to your specific constraints
- Can't assess team expertise
- Doesn't know your timeline/budget
- Generic advice, not tailored
✅ ALTERNATIVE:
- Hire experienced architect
- Use AI for research (gather options)
- Human makes final decision
```
**4. Security-Critical Code**
```
❌ BAD for AI alone:
- Cryptography implementation
- Payment processing
- Authentication systems
AI limitation:
- May introduce subtle vulnerabilities
- Hallucinate security best practices
- No security audit capability
✅ ALTERNATIVE:
- AI generates scaffold
- Security expert reviews
- Penetration testing
- Use battle-tested libraries (don't reinvent)
```
---
### ✅ Hybrid Workflow: AI + Human
**Pattern: AI for Speed, Human for Accuracy**
**Example: Payment Integration**
**Step 1: AI Research (5 min)**
```
Prompt to Claude:
"Research Stripe payment integration best practices:
- Common pitfalls
- Security considerations
- Webhook setup
- Idempotency
Provide summary + links to official docs"
Output: Research summary ✅
```
**Step 2: AI Scaffold (10 min)**
```
Prompt: "Generate file structure + function signatures for Stripe integration.
DO NOT implement yet - just structure."
Output: Scaffold ✅
```
**Step 3: Human Implementation (30 min)**
```
- Read Stripe official docs
- Implement critical functions manually
- Copy-paste exact examples from Stripe docs
- Test with Stripe test mode
Output: Production-ready code ✅
```
**Step 4: AI Documentation (5 min)**
```
Prompt: "Generate README for this Stripe integration:
[paste code]
Include:
- Setup steps
- Environment variables
- Testing guide
- Troubleshooting"
Output: Documentation ✅
```
**Total:**
- AI: 20 min (research + scaffold + docs)
- Human: 30 min (critical implementation)
- **50 min total** vs 90 min pure manual ✅
---
## 6. Emergency Playbook
### 🚨 AI Completely Blocked → What Now?
**Scenario 1: Claude/ChatGPT Rate Limited**
**Immediate Actions (< 5 min):**
1. ✅ Switch to backup tool (ChatGPT ↔ Claude)
2. ✅ Use free tier of other tools (Gemini, Perplexity)
3. ✅ Fall back to GitHub Copilot (VS Code)
**Short-Term (< 30 min):**
1. ✅ Sign up for Claude API (pay-per-use)
2. ✅ Use alternative accounts if available
3. ✅ Check when rate limit resets
**Long-Term Prevention:**
1. ✅ Always have 2+ AI tool subscriptions
2. ✅ Implement caching to reduce API calls
3. ✅ Batch requests
---
**Scenario 2: AI Consistently Giving Wrong Answers**
**Debug Checklist:**
```markdown
1. ❓ Is your prompt clear and specific?
→ Try reformulating with more context
2. ❓ Are you providing outdated info?
→ Check if docs you pasted are current
3. ❓ Is task too complex for AI?
→ Break into smaller subtasks
4. ❓ Is AI hallucinating specific APIs?
→ Switch to documentation-first approach
5. ❓ Are you using wrong tool for task?
→ Claude for reasoning, ChatGPT for code gen, Copilot for snippets
```
**If still failing:**
→ Accept this task needs manual approach ✅
---
**Scenario 3: Critical Production Bug, AI Can't Help**
**Manual Debugging Workflow:**
```markdown
**Stop using AI when:**
- Bug is time-critical (production down)
- Requires real-time system access
- Needs deep debugging (memory dumps, profiling)
**Manual Steps:**
1. ✅ Check error logs (Sentry, CloudWatch, etc.)
2. ✅ Reproduce bug locally
3. ✅ Use debugger (breakpoints, step-through)
4. ✅ Add detailed logging
5. ✅ Isolate failing component
6. ✅ Test fix thoroughly
**Time to Resolution:**
- With AI: 2 hours (if AI can help)
- Pure manual: 1 hour (focused debugging)
→ Manual faster for critical bugs ✅
**Post-Fix:**
- Document root cause
- Add test case
- Use AI to generate preventive tests
```
---
## Závěr & Takeaways
### ✅ Key Lessons
**1. AI Has Real Limitations - Accept Them**
- ❌ AI is NOT a replacement for expertise
- ✅ AI is a productivity multiplier
- ❌ AI can't verify facts in real-time
- ✅ AI can generate options quickly
**2. Workarounds Are Essential**
- ✅ Documentation-first prompting
- ✅ Verification workflows
- ✅ Hybrid AI + manual approaches
- ✅ Multiple tool strategy
**3. Know When to Stop Using AI**
- ❌ Security-critical code (use AI for scaffold, expert for implementation)
- ❌ Domain-specific expertise (hire expert, use AI for research)
- ❌ Production incidents (manual debugging faster)
**4. Build Your Own Systems**
- ✅ Prompt libraries (verified templates)
- ✅ Verification scripts (catch hallucinations)
- ✅ Backup tools (never rely on single AI)
### 📊 Success Metrics
**Track These Weekly:**
- **Hallucination Rate:** Aim for <5% (with workarounds)
- **Verification Time:** <10 min per code generation task
- **Manual Fallback:** <20% of tasks need pure manual
- **Tool Availability:** 95%+ uptime (with backups)
### 🎯 30-Day Action Plan
**Week 1: Implement Workarounds**
- ✅ Create 3-5 verified prompt templates
- ✅ Set up TypeScript/linting for auto-verification
- ✅ Test documentation-first approach
**Week 2: Backup Systems**
- ✅ Subscribe to 2nd AI tool
- ✅ Learn alternative workflows
- ✅ Test emergency fallbacks
**Week 3: Hybrid Workflows**
- ✅ Practice AI scaffold + manual implementation
- ✅ Document when AI helps vs when manual is faster
- ✅ Optimize workflow split
**Week 4: Measurement & Iteration**
- ✅ Track hallucination rate
- ✅ Measure time savings
- ✅ Refine templates based on learnings
---
**Remember: Perfect AI doesn't exist. Effective AI workflows = embracing limitations + building robust workarounds. 🛠️**
**Pro tip: The developers who get most value from AI are those who know EXACTLY when NOT to use it.** 💡
Kde použít tento prompt?
Najděte vhodné AI nástroje pro použití tohoto promptu a maximalizujte jeho efektivitu.
Podobné prompty
Asynchronous communication framework
Implementuj async-first komunikační strategie pro remote work a deep work protection.
Produktivita
Zobrazit
Automatizace a workflow optimization
Identifikuj repetitivní úkoly a navrhni automatizační workflow pro zvýšení efektivity.
Produktivita
Zobrazit
Calendar blocking a time management strategie
Vytvoř time blocking strategii s calendar optimization pro maximální produktivitu.
Produktivita
Zobrazit
Chatbot conversation flow
Navržení natural conversation flow pro customer service chatbot.
Produktivita
Zobrazit
Objevte další AI prompty
Prozkoumejte naši sbírku Produktivita promptů a najděte ty, které vám pomohou dosáhnout lepších výsledků.